BATTERY POWER FROM POTATOESWATCH VIDEO

Potato battery -- new and improvedCLICK HERE FOR MOVIE

Potato battery — new and improved

Video Description

July 28 – Israeli researchers develop a more efficient version of the age-old child’s science experiment, the potato battery, which could provide a cheap source of electricity in the developing world. Stuart McDill reports.

Sourced & published by Henry Sapiecha


Native-Like Spider Silk Produced in

Metabolically Engineered Bacteria

Science (July 27, 2010) — Researchers have long envied spiders’ ability to manufacture silk that is light-weighted while as strong and tough as steel or Kevlar. Indeed, finer than human hair, five times stronger by weight than steel, and three times tougher than the top quality man-made fiber Kevlar, spider dragline silk is an ideal material for numerous applications. Suggested industrial applications have ranged from parachute cords and protective clothing to composite materials in aircrafts. Also, many biomedical applications are envisioned due to its biocompatibility and biodegradability.


Unfortunately, natural dragline silk cannot be conveniently obtained by farming spiders because they are highly territorial and aggressive. To develop a more sustainable process, can scientists mass-produce artificial silk while maintaining the amazing properties of native silk? That is something Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, the Republic of Korea, and his collaborators, Professor Young Hwan Park at Seoul National University and Professor David Kaplan at Tufts University, wanted to figure out. Their method is very similar to what spiders essentially do: first, expression of recombinant silk proteins; second, making the soluble silk proteins into water-insoluble fibers through spinning.

For the successful expression of high molecular weight spider silk protein, Professor Lee and his colleagues pieced together the silk gene from chemically synthesized oligonucleotides, and then inserted it into the expression host (in this case, an industrially safe bacterium Escherichia coli which is normally found in our gut). Initially, the bacterium refused to the challenging task of producing high molecular weight spider silk protein due to the unique characteristics of the protein, such as extremely large size, repetitive nature of the protein structure, and biased abundance of a particular amino acid glycine. “To make E. coli synthesize this ultra high molecular weight (as big as 285 kilodalton) spider silk protein having highly repetitive amino acid sequence, we helped E. coli overcome the difficulties by systems metabolic engineering,” says Sang Yup Lee, Distinguished Professor of KAIST, who led this project. His team boosted the pool of glycyl-tRNA, the major building block of spider silk protein synthesis. “We could obtain appreciable expression of the 285 kilodalton spider silk protein, which is the largest recombinant silk protein ever produced in E. coli. That was really incredible.” says Dr. Xia.

But this was only step one. The KAIST team performed high-cell-density cultures for mass production of the recombinant spider silk protein. Then, the team developed a simple, easy to scale-up purification process for the recombinant spider silk protein. The purified spider silk protein could be spun into beautiful silk fiber. To study the mechanical properties of the artificial spider silk, the researchers determined tenacity, elongation, and Young’s modulus, the three critical mechanical parameters that represent a fiber’s strength, extensibility, and stiffness. Importantly, the artificial fiber displayed the tenacity, elongation, and Young’s modulus of 508 MPa, 15%, and 21 GPa, respectively, which are comparable to those of the native spider silk.

“We have offered an overall platform for mass production of native-like spider dragline silk. This platform would enable us to have broader industrial and biomedical applications for spider silk. Moreover, many other silk-like biomaterials such as elastin, collagen, byssus, resilin, and other repetitive proteins have similar features to spider silk protein. Thus, our platform should also be useful for their efficient bio-based production and applications,” concludes Professor Lee.

This work is published on July 26 in the Proceedings of the National Academy of Sciences (PNAS) online

Sourced & published by Henry Sapiecha

WATCH YOUR PHOTOS DON’T GIVE YOU UP

Before you proudly go posting photos of your Ming vase online, you should be aware that computer-savvy burglars can likely use that photo to find out where you live. The same goes for photos or videos of your kids, yourself, or anything else that you don’t want strangers knowing how to locate. The practice of tracking people via their posted images is an example of “cybercasing”, and is possible because many digital cameras and smart phones, including the iPhone, automatically geotag their images by embedding the longitude and latitude at which they were taken. Even when uploaded to a website, the images still retain this information. By plugging the coordinates into a service like Google Street View, getting an address or an identifying landmark is entirely possible.

This disturbing fact was recently announced in a report published by the International Computer Science Institute (ICSI). Researchers Gerald Friedland and Robin Sommer wrote that they successfully obtained the home addresses of people who had posted photos in ads on Craigslist, despite those people having opted to keep their addresses hidden in their postings.

Creepier still, they were also able to obtain addresses where home videos of children had been shot, by searching under the tag “kids” on YouTube. They then proceeded to search for recent videos from those same users, that had been shot over 1,000 miles away. Within 15 minutes, they were able to determine that 13 of these video posters were likely still away on vacation, leaving their homes available for burglary.

While iPhones do geotag by default, it is possible to turn the feature off. The folks over at I Can Stalk U (they’re against stalking, not in favor of it) can show you how. For other phones and cameras, a Googling or a look through your user’s manual should tell you what you need to know.

Sourced & published by Henry Sapiecha

Video on mind controlled prosthethic arm

In April scientists at the U.S. Defense Advanced Research Projects Agency (DARPA) put out a call seeking designs for a tactical flying car under its Transformer (TX) program. One of the first to respond is AVX Aircraft Company – its AVX Aircraft that can be manually driven on the ground like an SUV and also boasts Vertical Takeoff and Landing (VTOL) capability.

The stated objective of the TX program is to “demonstrate a four person flyable/roadable vehicle that will provide the warfighter with terrain-independent mobility. This presents unprecedented capability to avoid traditional and asymmetrical threats while avoiding road obstructions.” The TX will be designed to enhance future operations with use in strike and raid, intervention, interdiction, insurgency/counterinsurgency, reconnaissance, medical evacuation and logistical supply.

The Broad Agency Announcement (BAA) from DARPA called for a design that:

  • could be manually driven on the ground like an SUV
  • rapidly configures between ground and flight configuration
  • has Vertical Takeoff and Landing (VTOL) capability
  • has a cruise speed equivalent to a light aircraft
  • has automated takeoff/landing flight control.

AVX met these performance requirements with its AVX TX design that has:

  • 1,040 lb payload
  • 250 nautical mile range on one tank of fuel
  • 10,000 ft mean sea level altitude at max gross weight
  • 80mph on road speed, 30mph rough terrain speed
  • 140mph flying speed
  • converts from road to flight mode in 60 seconds

AVX says its TX will also have intuitive controls that will provide non-pilot operator control and navigation systems that are intuitive enough to facilitate the transition from road to flight operations. The vehicle’s dual ducted fans will provide propulsion both on the ground and in the air.

Additionally the AVX (TX) can be quickly converted to medivac with a vehicle operator, medical attendant and littered patient. It can also be converted to a resupply vehicle and can move 12,50 lbs as an unmanned vehicle using a sling or 1,000 lbs as a manned vehicle with the same 250 nm range.

Sourced & published by Henry Sapiecha

Robot Walks on Water

Mimicking Insects to Avoid Sinking

Using Surface Tension

July 1, 2006 — A new robot made of ultralight carbon-fiber can stand or slowly walk on water. The principle it uses is borrowed from insects — surface tension tends to prevent the water’s surface from breaking, and the robot’s legs from sinking in.


PITTSBURGH — Nature inspires many things, from fashion to perfume to furniture. Now, technology gets a little inspiration.

After watching tiny bugs like these walk on water, Carnegie Mellon University mechanical engineer Metin Sitti wanted one of his own.

“We tried to make a robot to simulate the insect,” he tells DBIS. He tried and succeeded. This new tiny, lightweight, spindly legged creature is a robot that can propel itself across water in all directions. It can turn even sharp corners like the insect does, so it’s very agile.

The robot’s body is made of a super-light carbon fiber material. Its steel legs are coated with non-stick Teflon to repel water. A tiny battery gives it power.

“Right now we move by five centimeters per second, and the real insect can go up to one meter per second. So we are like around 20-times less speed,” Sitti says.

It might be slower, but just like insects, the robot doesn’t float. It stands on top of water thanks to the physics of surface tension. The surface is so strong that the robot’s feet only dent the water without breaking the surface while supporting the weight of the robot without sinking.

“When they put their legs on the surface of the water surface, they repel each other,” Sitti says. “And that repulsion can lift the body because it’s so light bodyweight.”

In the near future, Sitti says his creation could carry sensors to detect toxins in water supplies. “We can make many of them, like tens or hundreds of them, and cover a wide range and give you constant, continuous, water quality report,” he says.

Researchers have already received interest in the robot as an educational toy, to educate students and the public about water surface effects, and to provide entertainment.

BACKGROUND: Researchers at Carnegie Mellon University have built a tiny robot that can walk on water, much like insects known as water skimmers, water skaters, pond skaters or Jesus bugs. Although it is still a prototype, its creators believe it could one day be equipped with biochemical sensors that monitor water quality. It could be used with cameras for spying, search and rescue operations, or for exploration. The robot might also be outfitted with bacteria to help break down pollutants in the environment.

THE JESUS LIZARD: In 2004, Harvard researchers discovered how basilisk lizards (sometimes called “Jesus lizards” because they appear to walk on water) manage to run across the surface of water on their two hind legs, with front arms outstretched. They move at speeds faster than 1.5 meters per second, comparable to a human running 65 MPH. The lizard first slaps the water with its web-like foot, strokes downward with an elliptical motion to create an air pocket, and then pulls its foot out of the water by curling its toes inward. By repeating this sequence up to 10 times a second, it generates sufficient forward thrust and lift to run on water without tipping over or sinking.

WHAT IS BIOMIMICRY: Biomimicry is a field in which scientists, engineers, and even architects study models and concepts found in nature, and try to use them to design new technologies. It as a design principle that seeks sustainable solutions to human problems by emulating nature’s time-tested patterns and strategies. Nature fits form to function, rewards cooperation, and banks on diversity. For instance, the Eastgate Building in Harare, Zimbabwe, is the country’s largest commercial and shopping complex, and yet it uses less than 10 percent of the energy consumed by a conventional building of its size, because there is no central air conditioning and only a minimal heating system. The design follows the cooling and heating principles used in the region’s termite mounds.

The Institute of Electrical and Electronics Engineers, Inc., contributed to the information contained in the TV portion of this report.

Sourced & published by Henry Sapiecha


Nature’s Insect Repellents Discovered

Science (July 17, 2010) — In the battle between insect predators and their prey, chemical signals called kairomones serve as an early-warning system. Pervasively emitted by the predators, the compounds are detected by their prey, and can even trigger adaptations, such a change in body size or armor, that help protect the prey. But as widespread as kairomones are in the insect world, their chemical identity has remained largely unknown. New research by Rockefeller University’s Joel E. Cohen and colleagues at the University of Haifa in Israel has identified two compounds emitted by mosquito predators that make the mosquitoes less inclined to lay eggs in pools of water.


The findings, published in the July issue of Ecology Letters, may provide new environmentally friendly tactics for repelling and controlling disease-carrying insects.

Many animals use chemicals to communicate with each other. Pheromones, which influence social and reproductive behaviors within a particular species, are probably the best known and studied. Kairomones are produced by an individual of one species and received by an individual of a different species, with the receiving species often benefiting at the expense of the donor.

Cohen and his Israeli colleagues focused on the interaction between two insect species found in temporary pools of the Mediterranean and the Middle East: larvae of the mosquito C. longiareolata and its predator, the backswimmer N. maculata. When the arriving female mosquitoes detect a chemical emitted by the backswimmer, they are less likely to lay eggs in that pool.

To reproduce conditions of temporary pools in the field, the researchers used aged tap water with fish food added as a source of nutrients. Individual backswimmers were then placed in vials containing samples of the temporary pools, and air samples were collected from the headspace within the vials. The researchers used gas chromatography-mass spectrometry to analyze the chemicals emitted by the backswimmers.

Cohen and his colleagues identified two chemicals, hydrocarbons called n-heneicosane and n-tricosane, which repelled egg-laying by mosquitoes at the concentrations of those compounds found in nature. Together, the two chemicals had an additive effect.

Since the mosquitoes can detect the backswimmer’s kairomones from above the water’s surface, predator-released kairomones can reduce the mosquito’s immediate risk of predation, says Cohen. But they also increase the female mosquito’s chance of dying from other causes before she finds a pool safe for her to lay her eggs in.

“That’s why we think these chemicals could be a useful part of a strategy to control the population size of mosquitoes,” says Cohen, who is the Abby Mauzé Rockefeller Professor and head of the Laboratory of Populations. “We started this work from very basic curiosity about how food webs and predator-prey interactions work, but we now see unexpected practical applications. These newly identified compounds, and others that remain to be discovered, might be effective in controlling populations of disease-carrying insects. It’s far too soon to say, but there’s the possibility of an advance in the battle against infectious disease.”

Sourced & published by Henry Sapiecha

Plant Extract May Be Effective Against

Inflammatory Bowel Disease

Science (July 11, 2010) — A South Dakota State University scientist’s research shows an extract made from a food plant in the Brassica family was effective in alleviating signs of ulcerative colitis, an inflammatory bowel condition, in mice.


The ongoing study by associate professor Moul Dey in SDSU’s Department of Health and Nutritional Sciences — funded by the National Institutes of Health — moves on now to examine the potential use of the plant extract against colon cancer.

“There is an established link between ulcerative colitis and colon cancer. People who have ulcerative colitis are at significantly higher risk to have colon cancer,” Dey said. “Whether this plant extract might help with colon cancer symptoms directly or perhaps delay the onset of colon cancer in ulcerative colitis patients, we don’t know the answers to those questions, but it is something we would like to look into.”

Dey and her team will carry out that research over the next two and a half years as she continues her work on a Pathway to Independence award for promising young scientists. That National Institutes of Health grant of nearly $900,000 over five years was awarded to Dey for work she began as a researcher at Rutgers University.

As a researcher at Rutgers starting in 2004, Dey developed a mammalian cell-based screening platform and screened nearly 3,000 plant extracts for potential anti-inflammatory activity. A plant-derived compound called Phenethylisothiocyanate, or PEITC, was one among others that showed potential anti-inflammatory activities. The NIH funded Dey’s proposal to study it further.

PEITC is found in the Brassica genus of plants, which includes cabbage, cauliflower, watercress and broccoli. Barbarea verna, also known as upland cress or early wintercress, a herb that is used in salads, soups, and garnishes, is one of the richest sources of dietary PEITC in Dey’s study.

Scientists had already studied the compound for its anticarcinogenic properties prior to Dey’s investigation on its anti-inflammatory activities.

“I tested this substance in a mouse model that is already established and widely used. What we found is that it not only alleviates several clinical signs of ulcerative colitis — for example, it attenuates the damage that occurs in the colon tissues and colon epithelium, as well as the clinical signs like diarrhea and blood in stool. The weight loss is a major sign in colitis and that was alleviated, too.” However, she noted that although mammalian animal models are routinely used for an initial test of biological effects of compounds targeted for potential human use, obtained results may not always repeat in humans.

Inflammatory bowel disease, or IBD, is a set of chronic and relapsing inflammatory disorders of the intestine that affects an estimated 2 million people annually in the United States. Two common forms of IBD are Crohn’s disease and ulcerative colitis.

When Dey and her colleagues looked into the mechanism by which the compound might be working against IBD, they found that it downregulates many of the genes that are known to be upregulated in human patients with colitis. That means the compound acts on cells to decrease the quantity of cellular components such as specific proteins that are produced abundantly in colitis patients. One such protein is a novel transcription factor. Transcription factors are one of the groups of proteins that read and interpret the genetic “blueprint” in the DNA.

“We are excited about these findings and our next step would be to see how this plant and the compounds from this plant may be effective against colon cancer, alleviating colon cancer or preventing the onset of colon cancer,” Dey said.

“I am not a cancer biologist per se. My interests are really in cellular mechanisms of inflammatory diseases. The only reason we are going to study colon cancer in this particular project is because ulcerative colitis is very closely linked to colon cancer.”

Colon carcinogenesis is highly preventable, yet colon cancer has one of the highest death rates among all cancers due to typical late diagnosis.

Since people already eat vegetables containing PEITC, there is a long history of human consumption with no adverse effects.

“Obviously the dose we are testing is significantly higher than what we eat in a vegetable, but we have done multiple safety tests and found that this dose is safe in animals,” Dey said.

Dey has no plans to test the extract in humans as part of the current project, but said additional tests would be required if the extract leads to new drugs or treatments in humans.

Dey’s co-authors are Peter Kuhn of Phytomedics Inc., of Jamesburg, N.J.; David Ribnicky, Kenneth Reuhl and Ilya Raskin of Rutgers University, and VummidiGiridhar Premkumar, who is currently at University of Cincinnati

Sourced & published by Henry Sapiecha

New ‘ocean’ being born in Africa


LONDON (UPI) — A new ocean is being born in Africa that will eventually split the continent in two, British researchers say.

Scientists at Britain’s Royal Society say a 40-mile crack in the Earth opened in Ethiopia in 2005 and has been growing ever since, the BBC reported Friday.

The crack will eventually became the sea bed of a new ocean that will divide Africa in two, though the process will require about 10 million years, scientists say.

Used to understanding planetary changes on timescales involving millions of years, scientists say the crack in the remote Afar region of Ethiopia is dramatic in the speed at which it is growing.

The 40-mile crack opened to a width of 22 feet in just 10 days, they say.

Ultimately, they say, the horn of Africa will split from the continent, and the crack, in a region below sea level, will fill with salt water.

“It will pull apart, sink down deeper and deeper and eventually … parts of southern Ethiopia, Somalia will drift off, create a new island, and we’ll have a smaller Africa and a very big island that floats out into the Indian Ocean,” said Dr. James Hammond, a seismologist from the University of Bristol.

Copyright 2010 by United Press International

Sourced & published by Henry Sapiecha